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Hydrodynamic stability plays a crucial role for many applications. Existing approaches
focus on the dependence of the stability properties on control parameters such as the Rey-
nolds or the Rayleigh number. In this paper we propose a numerical method which aims at
solving shape optimization problems in the context of hydrodynamic stability. The consid-
ered approach allows to guarantee hydrodynamic stability by modifying parts of the
underlying geometry within a certain flow regime. This leads to a formulation of a shape
optimization problem with constraints on the eigenvalues related to the linearized
Navier–Stokes equations. In that context the eigenvalue problem is generally non-symmet-
ric and may involve complex eigenvalues. To validate the proposed numerical approach we
consider the flow around a body in a channel. The shape of the body is parameterized and
can be changed by means of a discrete number of design variables. It is our aim to find a
design which minimizes the drag force and ensures at the same time hydrodynamic stabil-
ity while keeping the volume of the body constant. The numerical results show that a tran-
sition from an unstable design to a stable one is attainable by considering an adequate
change of the body shape. The resulting bodies are long and flat which corresponds to com-
mon intuition.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Hydrodynamic stability plays a crucial role for many applications where fluid flows are unstable in the sense that small
perturbations superimposed on the mean flow can amplify and significantly disturb the basic state. With respect to the con-
cept of stability several approaches have been devised which provide rigorous results but allow to depict only some facets of
the highly complex physical mechanism leading to instability. The energy method ensures for example exponential decay in
time of the energy of the system as well as unconditional stability assuming that some control parameters are below a crit-
ical value (see, e.g. [1] and references therein). An unconditional stability means that this property does not depend on the
size of the initial perturbation. In many systems the information provided by the energy method is however quite pessimistic
and the stability region which is provided is far away from the experimentally observed onset of instabilities (see [2]). Meth-
ods based on generalized energy functionals intend to cope with this issue and lead to conditional stability statements [3,4].
The method of linearized stability provides statements on conditional stability on the basis of a non-symmetric eigenvalue
problem related to the linearized operator of the Navier–Stokes equation (see, e.g. [5]).

All these approaches have in common that they analyze the dependence between the stability properties and the value of
a control parameter, usually the Reynolds number Re in a purely hydrodynamic system or the Rayleigh number Ra in Bénard
convection. In that context prototypical systems are for example the Couette and the Poiseuille flow, the Rayleigh–Bénard
and the Taylor–Couette system. A comprehensive overview is given in [2,6].
. All rights reserved.
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In this paper we enlarge the class of such problems of stability to the case of shape optimization problems. We focus on a
numerical approach which allows to determine optimal shape in the context of flow problems in that it minimizes a given
cost functional while satisfying stability constraints with respect to the underlying flow. Since two decades shape optimiza-
tion in fluids and flow control is a major research topic (see [7–11,15] and references therein). To the knowledge of the
authors this type of problems has not been addressed so far in the context of stability by means of numerical methods de-
spite their high relevance in many applications. This is mainly due to the fact that both topics, shape optimization and hydro-
dynamic stability, are generally highly challenging numerical problems on their own considering complex flow
configurations.

To illustrate and validate numerically the proposed approach we consider the configuration of a flow in channel around a
body whose shape is optimized towards the minimization of the acting drag forces. The underlying configuration is depicted
in Fig. 4. For the case of a disk, benchmark computations with a main emphasis on the efficiency of the underlying numerical
solver are summarized in [12]. Stability results for this type of problems can be found in [13,14]. In our approach the shape of
the body inside the channel is parameterized. The corresponding parameters play the role of the design variables in the
shape optimization problem. It is our aim to find a design which minimizes the drag forces and ensures linear stability of
the hydrodynamic system.

The further contents of this paper are as follows: In Section 2 we discuss the special features of the considered shape opti-
mization problem particularly the formulation of the linear stability constraints for the incompressible Navier–Stokes equa-
tions in that context. Section 3 introduces the details of the parameterization of the body inside the channel by means of
quadratic as well as cubic spline approximations. Then, Section 4 outlines the proposed numerical method to solve this type
of problems. The main emphasis is given to the development of a multigrid based Davidson method for the eigenvalue com-
putation as well as an adequate SQP algorithm in that context. Numerical results for a benchmark flow problem are pre-
sented in Section 5. Finally, Section 6 is dedicated to the conclusions and we point out possible outcomes and future
research topics related to the presented approach.
2. Linear stability and problem formulation

In a bounded domain Xq � Rd, where d = 2 or d = 3, we consider a base flow û :¼ fv̂; p̂g, determined by the stationary
Navier–Stokes equations describing viscous, incompressible Newtonian fluid flow,
� mDv̂þ v̂ � rv̂þrp̂ ¼ f in Xq;

r � v̂ ¼ 0 in Xq;
ð1Þ
where v̂ describes the velocity vector field, p̂ denotes the pressure, m is the kinematic viscosity and f is a prescribed volume
force. For ease of presentation we assume here that the density q � 1. The subscript q in the notation Xq describes the
parameterization of the underlying computational domain. We assume q to be a finite-dimensional vector. Furthermore,
problem (1) is assumed to have a unique solution and that for a solution operator S the relation û ¼ SðqÞ holds. At the bound-
ary oXq, the usual non-slip boundary conditions are imposed along rigid parts together with suitable inflow and free-stream
outflow conditions,
v̂jCrigid
¼ 0; v̂jCin

¼ v̂in; monv̂� p̂njCout
¼ 0: ð2Þ
In our framework we consider the hydrodynamic stability by means of linear stability. This method relies on the solution of
the eigenvalue problem related to the linearization of (1) about û.
AðûÞðuÞ ¼ �mDvþ v̂ � rvþ v � rv̂þrp ¼ kv in Xq;

r � v ¼ 0 in Xq;
ð3Þ
for nonzero u:¼{v,p} 2 V and k 2 C, under homogeneous boundary conditions (2). Here, V � H1(Xq)d � L2(Xq) is a suitable
subspace according to the prescribed boundary conditions (2). Obviously, this eigenvalue problem is non-symmetric and
may possess complex eigenvalues. If an eigenvalue of (3) has Rek < 0, then the base solution û is unstable, otherwise it is said
to be linearly stable (see, e.g. [2]).

The shape of the geometry is described by a spline function representation. Certain parameters of this representation are
taken as design variables. It is important to note that the proposed method can be used in a very general setup both with
respect to the body description as well as the goal functional. Within this context the shape optimization problem we want
to solve is formulated as follows:
min
q

JðqÞ ¼ FDðqÞ

s:t:

ReðkminðAðSðqÞÞÞÞP 0;

q 6 q 6 �q;

ð4Þ
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where q is a design variable vector consisting of parameters for the description of the body by spline functions. The vectors q
and �q are lower and upper bounds for the parameters due to restrictions on the geometry of the body. The drag force acting
on the body B is given by (cf. Fig. 4)
FD ¼
Z

B
qm

out

on
ny � pnx

� �
dS;
where oS is the surface of the object, n is the normal vector on S with its components nx, ny. The tangential velocity on S is
denoted by ut and the tangent vector is defined by (ny, �nx). During the design process it turns out that additional con-
straints on the body B, e.g. volume restriction, are physically meaningful. They lead to the following optimization
problem:
min
q

JðqÞ ¼ FDðqÞ

s:t:

ReðkminðAðSðqÞÞÞÞP 0;

volðBÞ ¼ const;

q 6 q 6 �q:

ð5Þ
3. Shape parameterization

For the description of the shape of the body we use approximations by spline functions consisting of compositions of qua-
dratic as well as cubic Bézier curves (see, e.g. [16]). We focus on the description in just one quadrant using symmetry prop-
erties for the other parts.

3.1. Approximation by quadratic spline functions

A parametric quadratic Bézier curve b : ½0;1� ! R2 is defined as linear combination
bðtÞ ¼
X2

j¼0

bjB
ð2Þ
j ðtÞ
with given control points b0; b1; b2 2 R2, where bj = (bj,x, bj,y), and Bernstein polynomials
Bð2Þj ðtÞ ¼
2
j

� �
tjð1� tÞ2�j

; t 2 ½0;1�:
We assume a symmetric body whose center is the origin of a suitably selected coordinate system. In each quadrant we con-
struct a spline function consisting of two quadratic Bézier curves. We have for i = 0, 1
bðtÞ ¼
X2

j¼0

b2iþjB
2
j

t � ti

tiþ1 � ti

� �
on t 2 ½ti; tiþ1�;
where 0 = t0 < t1 < t2 = 1. As fixed control points, we set
b0 ¼ ð0;hÞ; b2 ¼ ðx1; y1Þ; b4 ¼ ðl; 0Þ
for height h and length l of the body and (x1, y1) is a given point which represents also a grid point for the numerical solution
of the problem. Furthermore, we want to guarantee a smooth connection to the other quadrants. This means that in b4 we
want to have slope infinity and in b0 slope 0. Having information about the slope m < 0 in the point (x1, y1) we can define two
additional control points b1, b3 as follows:
b1 ¼ ððhþmx1 � y1Þ=m;hÞ; b3 ¼ ðl;mlþ y1 �mx1Þ
ensuring the demanded differentiability properties. In this context we usually choose m = �1.0. Furthermore, the param-
eters l and h have to be chosen such that b1,x > 0 and b3,y > 0. To guarantee that the spline is C1 on [t0, t2] we set t1 accord-
ing to
t1 ¼
kb2 � b1k

kb3 � b2k þ kb2 � b1k
;

where k.k is the Euclidean norm. In Fig. 1 we show the construction in the first quadrant as well as the complete object.
In the optimization process using quadratic spline approximations the shape will be varied using different height and

length parameters. Possible configurations for various length parameters can be seen in Fig. 2. In the optimization problem
bounds on r and h have to be set to ensure physically sensible solutions.
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Fig. 1. Spline construction in first quadrant (left) and complete object (right).

–1 –0.5 0 0.5 1
–1

–0.8

–0.6

–0.4

–0.2

0 0

0.2

0.4

0.6

0.8

1 1

Length
–1 –0.5 0 0.5 1

Length

H
ei

gh
t

–1

–0.8

–0.6

–0.4

–0.2

0.2

0.4

0.6

0.8

H
ei

gh
t

Fig. 2. Different shapes with constant height (left) and constant volume (right).
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3.2. Approximation by cubic spline functions

To increase the space of admissible domains we also consider a description of the shape by cubic splines. The construction
idea is the same as above. In this case the Bézier curve is defined by
bðtÞ ¼
X3

j¼0

bjB
ð3Þ
j ðtÞ:
For the composition we have for i = 0, 1
bðtÞ ¼
X3

j¼0

b3iþjB
3
j

t � ti

tiþ1 � ti

� �
on t 2 ½ti; tiþ1�:
As control points for the composition of two cubic Bézier curves in the first quadrant we take in this case
b0 ¼ ð0;hÞ; b3 ¼ ðx1; y1Þ; b6 ¼ ðl; 0Þ
and further
b1 ¼ ðl=6;hÞ; b5 ¼ ðl; h=6Þ
to guarantee differentiability at b0 and b6. For a smooth connection at b3 we further set
b2 ¼ ðx1 � l=6; y1 �mh=6Þ; b4 ¼ ðx1 þ l=6; y1 þmh=6Þ
with given slope (1 � l, m � h) at b3, where m 2 [0, �1]. In this context we set t0 = 0, t1 = 1/2 and t2 = 1. The grid point b3 is not
fixed and depends on the choice of coefficients cl and ch,
b3 ¼ ðx1; y1Þ ¼ ðcl � l; ch � hÞ:
To avoid conflict with the other control points, we have heuristic constraints on the choice of coefficients. In our calculations
we set
0:5 < cl < 0:8:
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Fig. 3. Construction in the case of cubic spline approximation (left) and different shapes with constant volume (right).
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For the choice of ch we have more flexibility since shapes with ch > 1 are also feasible. We set, e.g.
0:5 < ch < 1:1:
Different shapes are shown in Fig. 3. Now it is also possible to consider a design with zero slope at the grid point b3 as indi-
cated by the dotted line. The modification of cl and ch leads to an adaptation of the mesh in each iteration step.

It turns out in Section 5 that it will also be important to consider a volume constraint. The volume Q is approximated by
the area under the control polygon on the interval [0, l]. It yields in good approximation the volume of the described
object.
Q ¼
X6

i¼1

ðbi;x � bi�1;xÞðbi�1;y þ bi;yÞ=2¼ 5
12
�m

6

� �
x1 þ

5
72
þ7m

72

� �
l

� �
hþ 7

12
y1l¼ 5

12
�m

6

� �
cl þ

5
72
þ7m

72

� �
þ 7

12
ch

� �
lh:
4. Discretization and solution process

In this section our goal is to describe the overall numerical solution process. In that context we follow a discretize-then-
optimize approach. The proposed scheme relies on the SQP method which in our framework involves the solution of an
eigenvalue problem for the hydrodynamic stability. Both for the Navier–Stokes equations and for the associated eigenvalue
problem the discretization is based on the finite element method. The efficient solution of the eigenvalue problem is a cor-
nerstone of the presented optimization solver.

4.1. Solution of hydrodynamic and eigenvalue problem

The starting point to solve (1) is a variational formulation of the Navier–Stokes problem. With the notation L:¼L2(Xq),bH :¼ H1ðXqÞd, and H :¼ fv 2 H1ðXqÞd; vjCin[Crigid
¼ 0g, let
bV :¼ bH � L; V :¼ H � L � bV :
For pairs u = {v,p} and / ¼ f/v;/pg 2 bV , we define the semilinear form
aðu; /Þ :¼ mðrv;r/vÞ þ ðv � rv;/vÞ � ðp;r � /vÞ þ ð/p;r � vÞ;

and the right-hand side f(/):¼(f, /v). Then, with a solenoidal extension v̂in 2 bV of the inflow data vin, we consider a solution
û ¼ fv̂; p̂g 2 V þ fv̂in; 0g of the problem
aðû; /Þ ¼ f ð/Þ 8/ 2 V : ð6Þ
We assume that the reference solution û is (locally) unique, that is, the Fréchet derivative a0ðû; �; �Þ is coercive. The variational
formulation of the corresponding eigenvalue problem uses the derivative form
a0ðû; w;/Þ :¼ mðrwv;r/vÞ þ ðv̂ � rwv;/vÞ þ ðwv � rv̂;/vÞ � ðwp;r � /vÞ þ ð/p;r � wvÞ;
and the bilinear form
mðw;/Þ :¼ ðwv;/vÞ;
for arguments w = {wv, wp} and / = {/v, /p} 2 V. Then, the eigenvalue problem associated to the solution û determines
u = {v,p} 2 Vn{0} by
a0ðû; u;/Þ ¼ kmðu;/Þ 8/ 2 V : ð7Þ



Fig. 4. Geometry of 2D benchmark configuration.
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The ‘primal’ eigenfunctions are usually normalized by m(u, u) = kvk2 = 1. For the following discussion, we assume that the
eigenvalue of interest k has geometrical multiplicity one. The case of higher geometrical multiplicity requires some obvious
changes. Associated to the primal eigenfunction u, there is a ‘dual’ eigenfunction u* = {v*, p*} 2 Vn{0} corresponding to k that
is determined by the ‘dual’ eigenvalue problem
a0ðû; /;u�Þ ¼ kmð/;u�Þ 8/ 2 V : ð8Þ
In order to solve (6)–(8) numerically by a Galerkin finite element method, the infinite dimensional spaces H and L are re-
placed by finite dimensional finite-element-spaces of functions which are piecewise mapped polynomials on a triangulation
Th. The considered meshes are supposed to be shape regular and geometrically conforming (see [17]). They consist of cur-
vilinear quadrilateral (or hexahedral) elements {K} covering the domain �Xq. For simplicity, we consider only affine meshes
where each K 2Th is affine equivalent to the reference element bK :¼ ð0;1Þd, i.e. K ¼ FKðbK Þwith FK affine and orientation pre-
serving. The considered trial and test spaces Xh � X consist of continuous, piecewise polynomial vector functions (so-called
Qk elements) for all unknowns,
X2;1
h :¼ fðph; vhÞ 2 Cð�XqÞ1þd

=phjK 	 FK 2 Q1ðbK Þ; vhjK 	 FK 2 Q 2ðbK Þg: ð9Þ
Here, QrðbK Þ; r ¼ 1;2, is the space of tensor-product polynomials of degree r on the reference element bK , i.e.
Q rðbK Þ :¼ spanfxiyjzk : 0 6 i; j; k 6 rg; ð10Þ
where k = 0 when d = 2.
The corresponding finite element subspaces are denoted by
Lh � L; bHh � bH;Hh � H; bV h :¼ Lh � bHh;Vh :¼ Lh � Hh;
and v̂in
h 2 bHh is a suitable interpolation of the boundary function v̂in. Then, the discrete Navier–Stokes problem determines

ûh :¼ fv̂h; p̂hg 2 Vh þ fv̂in
h ; 0g by
aðûh; /hÞ ¼ f ð/hÞ 8/h 2 Vh: ð11Þ
The associated discrete primal and dual eigenvalue problems seek uh = {vh, ph} and u�h ¼ fv�h; p�hg in Vn{0} and kh 2 C, such that
a0ðûh; uh;/hÞ ¼ khmðuh;/hÞ 8/h 2 Vh; ð12Þ
a0ðûh; /h;u

�
hÞ ¼ khmð/h;u

�
hÞ 8/h 2 Vh; ð13Þ
The eigenfunctions are usually normalized by mðuh;uhÞ ¼ mðuh;u�hÞ ¼ 1. Eq. (6) has saddle-point structure due to the specific
coupling of the pressure and the velocity. Therefore, the discretization must fulfill the so-called Babŭska-Brezzi (BB) condi-
tion which particularly guarantees a stable approximation of the pressure and avoids the occurrence of spurious pressure
modes (see, e.g. [18]). One important advantage related to the choice of X2;1

h for the discretization is that this condition is
automatically fulfilled and does not necessitate any additional stabilization terms (see, e.g. [18]).

The resulting nonlinear algebraic system of the hydrodynamic problem (1) is solved implicitly in a fully coupled manner
by means of a damped Newton method. The involved Jacobian is directly derived from the analytical derivative of the var-
iational system. The occurring linear subproblems are solved by the generalized minimal residual method (GMRES) precondi-
tioned by means of multigrid iteration. Two specific features characterize the scheme: varying orders of the FEM ansatz on
the mesh hierarchy and Vanka-type smoothers adapted to higher order discretization. We refer to [19] for more details.

The solution of the eigenvalue problem is a highly tedious task since the appearing problems are non self-adjoint. The
considered approach for the eigenvalue computation uses a scheme which couples the Jacobi–Davidson method ([20,21])
with a multigrid process (for more details see [14,22]). This method shows to be highly efficient as compared to standard
algebraic techniques. The overall solution process is implemented as part of the HiFlow project [23].

The advantages connected with this combined approach are mainly twofold. On the one hand, it allows in the context of
nested iteration a better control of the best available eigenpair approximate at a given level. Especially, as opposed to the
pure multigrid approach, eigenmodes which do not exist on the coarse levels can be nevertheless recovered on finer grids.
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On the other hand, the ability to change the size of the projection space for the Rayleigh matrix allows to adaptively balance
the multigrid and algebraic components. Algorithm 1 sketches the Jacobi–Davidson method combined with the multigrid
scheme. The maximal basis size is denoted by nB. The starting block vectors for the right (resp. left) eigenvectors are denoted
by V1 (resp. W1). The matrices A and M in the Algorithm 1 correspond to the stiffness and mass matrix in Eq. (12).

Algorithm 1. (MJD(nB, W1, V1)) for k = 1 to kmax: do


 Step 1. Compute Rayleigh matrix: Hk :¼WH
k MVk.


 Step 2. Compute the smallest left/right eigenpair fkk; yk; y
�
kg of Hk.


 Step 3. Compute left/right Ritz vectors xk:¼Vkyk and x�k :¼Wky�k.

 Step 4. Compute residuals rk:¼(kkM � A)xk and r�k :¼ ðkkM � AÞx�k.

 Step 5. If convergence exit.

 Step 6. Multigrid step MG(tk, rk) and MG�ðt�k; r�kÞ. If dim(Vk) < nB then set Wkþ1 :¼ ½Wk; t�k� and Vk+1:¼[Vk,tk] else set

Wkþ1 :¼ ½x�k; t�k� and Vk+1:¼[xk,tk].

 Step 7. Biorthogonalize (Wk+1,Vk+1).

Furthermore, a posteriori estimates in terms of the cell residuals accomplish simultaneous control of the error in the lin-
earization and the error in the resulting eigenvalues. From these error estimates cell-wise error indicators are obtained that
can guide the mesh refinement process [24,25].

4.2. Solution of optimization problem

To solve the optimization problems (4) and (5) an active-set SQP method is considered using a BFGS update (see, e.g.
[26]). In each iteration step a quadratic subproblem is constructed and its solution yields a new iterate. The SQP approach
can be interpreted as a Newton’s method applied to the KKT optimality conditions of this quadratic subproblem. The
inequality constraints are treated using an active-set strategy. In that framework an inequality constraint appears in the La-
grange formulation as an equality constraint if the bound is reached at the current design point and neglected otherwise.
Hence in each iteration step only subproblems with equality constraints are solved. Here we want to sketch the algorithm
for the example of an active stability constraint. We define the Lagrange function for (4) as follows
Lðq;lÞ ¼ JðqÞ � lRefkminðAðSðqÞÞÞg:
To simplify notation we denote
ReðkminðqÞÞ :¼ RefkminðAðSðqÞÞÞg:
The KKT conditions are given by
oLðq;lÞ
oq

¼ 0;
oLðq;lÞ

ol
¼ 0
resulting in
rJðqÞ � lrReðkminðqÞÞ
ReðkminðqÞÞ

� �
¼

0
0

� �
:

The Jacobian of this system is given by
Jðq;lÞ ¼ r2
qqLðq;lÞ �rqReðkminðqÞÞT

rqReðkminðqÞÞ 0

 !

such that a Newton iteration yields in our case the following quadratic subproblem in iteration step k
BðkÞðqðkÞÞ �rqReðkðkÞminðqðkÞÞÞ
T

rqReðkðkÞminðqðkÞÞÞ 0

 !
pðkÞ

lðkþ1Þ

 !
¼

�rqJðkÞðqðkÞÞ
�ReðkðkÞminðqðkÞÞÞ

 !
;

where B(k)(q(k)) represents an adequate approximation of the Hessian of the Lagrangian r2
qqL

ðkÞ. In our case this approxima-
tion is determined by the BFGS formula. The derivatives of the drag and the eigenvalue function with respect to the design
variables are calculated by finite differences. This requires an additional function evaluation for each design variable. For the
design variable vector we have the update
qðkþ1Þ ¼ qðkÞ þ sðkÞpðkÞ;
where the parameter s(k) can be chosen by means of a line search method to ensure the feasibility of the newly computed
solution. This may require many additional function evaluations. In practice the step size is determined heuristically to guar-
antee that the iterates stay within the feasible domain.
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Remark. In order to obtain a feasible solution in case of violation of the inequality constraints the original optimization
problem can be regularized in the following way:
min
q

FDðqÞ þ ar

s:t:
ReðkminðAðSðqÞÞ þ rIÞP 0;
q 6 q 6 �q;

ð14Þ
where r plays the role of a shift coefficient with respect to the spectrum of A(S(q)) and a describes the regularization param-
eter. For the considered numerical experiments in Section 5 it turns out that this regularization is not needed.

Remark. The proposed SQP method relies on the differentiability of objective and constraint functions. For the computation
of the Jacobian J the differentiability of the function of the smallest eigenvalue is needed for the computation of
rRe(kmin(q)). It has to be noted that this assumption may not be fulfilled in the case of eigenvalues with multiplicity larger
than one (see [27] for details). During our calculations the authors did not encounter any problems related to this issue. In
order to tackle this kind of problem the proposed scheme should be generalized towards derivative-free or non-smooth opti-
mization algorithms.

Finally, we want to summarize the complete algorithm.

Algorithm 2.


 Step 1. Introduce suitable function approximation for the geometry and determine initial design variables q(0) = (q1, . . . ,qn),
set k:¼0.


 Step 2. Create mesh depending on design variable vector q(k).

 Step 3. Solve flow problem to obtain drag force FD(q(k)).

 Step 4. Solve eigenvalue problem to obtain Re(kmin(q(k))).

 Step 5. Determine derivatives of FD(q(k)) and Re(kmin(q(k))) with respect to design variables by finite differences.

 Step 6. Solve KKT system of the SQP algorithm to obtain direction p(k).

 Step 7. Determine suitable step length s(k).

 Step 8. Update design variable vector q(k+1) = q(k) + s(k)p(k).

 Step 9. If termination criterion is reached then STOP else set k:¼k + 1 and goto Step 2.

Remark. In the previously derived algorithm the major computational costs are related to steps 4 and 5, especially for the
computation of the eigenvalues of the linearized Navier–Stokes operator. In step 5 the derivatives with respect to the differ-
ent design variables can be computed independently. For a large number of parameters this step can obviously be fulfilled on
a parallel machine where each process computes the derivative of one of the design variables.
5. Numerical examples

5.1. Configuration setup

We consider the benchmark channel flow around a certain body in two dimensions as described in [12]. In the initial con-
figuration the body is assumed to be a cylinder. Here we want to pursue the approach to find the optimal shape of the body
which minimizes the drag force and guarantees hydrodynamic stability.

The geometry of the channel is depicted in Fig. 4.
In the two dimensional case for the considered benchmark, the channel is 2.2 m in length and H = 0.41 m in width. The

center of the cylinder is located at (0.2 m, 0.2 m) with a diameter of D = 0.1 m such that the configuration is not totally sym-
metric. The velocity at the inlet is prescribed by
v̂1ð0; yÞ ¼ 4jVmj
yðH � yÞ

H2 ; v̂2ð0; yÞ ¼ 0;
where jVmj denotes the maximum norm of the velocity at the inlet. The Reynolds number is defined by
Re ¼ VD
m
; V ¼ 2=3jVmj;
then yielding to a Reynolds number of around 20 for m = 10�3.

5.2. Parameter studies based on forward simulation

The goal of this section is to determine for which parameters the effect of a transition from unstable to stable behaviour
can be observed. This section has to be understood as a preliminary step in order to define an adequate problem setup for the
shape optimization process considered in our context.
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In particular we have to determine the critical Reynolds number leading to unstable flow. It is closely related to the inflow
velocity Vm. If the inlet velocity is too low one always has a stable regime and an unstable one if the velocity is too high.
Calculations show that for the benchmark configuration (I) the bifurcation point occurs at around Vm = 0.19 m/s. An overview
of the obtained bifurcation points for configurations with different length l and height h of the considered body is shown in
Table 1.

One clearly observes that for long and flat designs (II, III) the bifurcation point occurs at a larger velocity than for short and
steep designs (IV, V).

To get an insight of the drag and stability behaviour for the whole feasible domain we first determine these values for
various configurations of l and h for fixed inflow velocity Vm = 0.19 m/s. The corresponding results are shown in Figs. 5
and 6.
Table 1
Inflow velocities at which bifurcation point occurs for different configurations

Configuration Velocity Vm (m/s) at bifurcation point

(I) l = 0.05 m, h = 0.05 m 0.1896
(II) l = 0.08 m, h = 0.05 m 0.1963
(III) l = 0.08 m, h = 0.03 m 0.2222
(IV) l = 0.03 m, h = 0.05 m 0.1830
(V) l = 0.03 m, h = 0.08 m 0.1530

Fig. 5. Drag force acting on the body assuming different length and height.

Fig. 6. Smallest eigenvalues of the linearized Navier–Stokes operator assuming different length and height of the body.
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For constant h we observe an increase of the drag force for increasing l. The same holds vice versa for constant l. The
smallest value occurs for the smallest values of l and h. Comparing the magnitudes of the change we notice that the influence
of h is much larger as shown in Table 2. Therefore, the variation of h is more crucial with respect to the drag behaviour.

Concerning the stability behaviour we notice a tendency towards instability for increasing h. For increasing l, however, we
have a slight increase towards stability. This corresponds to the intuition that long and flat objects yield indeed stability.
Again, the influence of h is here larger than that of l. The corresponding results are summarized in Table 3.

5.3. Shape optimization assuming quadratic spline approximation

We first consider the optimization problem (4) and initially assume that the height h of the body is fixed at h = 0.05 m and
the length l is taken as design variable. This implies that we first allow volume and surface changes of the bodies. Lower and
upper bounds are set on the length parameter l to avoid physically infeasible solutions.
Table 2
Drag fo

Drag fo

l = 0.03
l = 0.04
l = 0.05
l = 0.06
l = 0.07

Table 3
Real pa

Re(kmin

l = 0.03
l = 0.04
l = 0.05
l = 0.06
l = 0.07

Fig. 7.
leads to
min
l

JðlÞ ¼ FDðlÞ

s:t:
ReðkminðlÞÞP 0;
0:03 m 6 l 6 0:08 m:
Our starting point is the benchmark configuration (cf. Fig. 7) and we choose an inflow velocity Vm = 0.195 m/s for which we
have an unstable behaviour indicated by the negative real part of the smallest eigenvalue, Re(kmin) = �0.02036. The value of
the drag force in this case is FD = 6.986 N.

Our optimization with respect to the length parameter l and fixed height h yields the optimized design shown in Fig. 8.
The obtained optimal length is l = 0.0785 m. Furthermore, we have FD = 7.791. Contrary to our goal to minimize the drag we
recognize that the drag force is higher than for the initial design. This increase, however, is necessary to avoid a violation of
the stability constraint which is now active, Re(kmin) = 5.7 � 10�6.

In a next step we consider the height h as additional design variable. In this case we obtain an optimum at the lower
bound of the box constraints for both parameters, l = h = 0.03 m. For the given inflow velocity this design is stable and the
rce for different configurations

rce FD h = 0.035 m h = 0.045 m h = 0.055 m h = 0.065 m

5 m 4.955 6.179 7.664 9.481
5 m 5.141 6.360 7.832 9.622
5 m 5.343 6.575 8.058 9.856
5 m 5.560 6.816 8.329 10.154
5 m 5.793 7.082 8.638 10.522

rt of smallest eigenvalue of linearized Navier–Stokes operator for different configurations

) h = 0.035 m h = 0.045 m h = 0.055 m h = 0.065 m

5 m 0.0387 �0.0007 �0.0373 �0.0728
5 m 0.0444 0.0075 �0.0267 �0.0596
5 m 0.0503 0.0150 �0.0178 �0.0493
5 m 0.0564 0.0220 �0.0098 �0.0403
5 m 0.0628 0.0289 �0.0023 �0.0324

Streamlines of eigenfunction associated to the smallest eigenvalue for the initial design, i.e. l = 0.05 m, h = 0.05 m, Vm = 0.195 m/s. This configuration
Re(kmin) = �0.02036 and FD = 6.986. The function plot corresponds to the first component of the eigenfunction.



Fig. 8. Streamlines of eigenfunction associated to the smallest eigenvalue for the optimal solution assuming fixed height h = 0.05 m and Vm = 0.195 m/s.
This setting leads to l = 0.0785 m, FD = 7.791 and Re(kmin) = 5.7 � 10�6. The function plot corresponds to the first component of the eigenfunction.
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drag reaches its smallest possible value, as is also obvious from Figs. 5 and 6. It is not surprising that in this situation the
optimal solution leads to the smallest possible volume of the body. In order to avoid this effect we assume a fixed volume
of the body in all further calculations.

Therefore, we repeat our parameter study with variable length l. In the case of the quadratic spline approximation we use
the volume of an ellipsoid, given by Q = plh, to approximate the volume of the body. In this case we observe (cf. Fig. 9) a
monotone decrease of the drag force with increasing l and an increase of the real part of the smallest eigenvalue which is
equivalent to a tendency towards a stability of the system.

A summary of this result is plotted in Fig. 10 which shows the dependence of the length and the inflow velocity at which
the bifurcation occurs. We observe a monotone increase for longer and flatter objects.

Concerning the optimization problem we extend the original formulation (4) by an additional constraint on the volume of
the body. We only want to accept designs which leave the volume of the body constant and its value is taken for the bench-
mark configuration
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Fig. 10. Inflow velocity at which bifurcation point occurs in dependence of length.
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min
l

Jðl; hðlÞÞ ¼ FDðl;hðlÞÞ

s:t:
Reðkminðl;hðlÞÞÞP 0;
VolðXqÞ ¼ const;
0:03 m 6 l 6 0:08 m;

0:03 m 6 h 6 0:08 m:
The optimization program yields J = 5.388 and kmin = 0.0675 with l = 0.08 m and h = 0.0312 m. The drag force is in this case
reduced by 22.9% compared with the initial setting. Moreover, we obtain clearly a stable regime since the real part of the
smallest eigenvalue is strictly positive. The optimized design and the first component of the eigenfunction can be seen in
Fig. 11.

Remark. It is important to notice that a change from unstable behaviour to stable behaviour can be achieved by modifying
alone the design of the object while leaving all other parameters constant.
5.4. Shape optimization assuming cubic spline approximation

Using a cubic spline description of the body as presented in Section 3.2, the design space is enlarged as compared to the
setup in Section 5.3. We therefore expect a further decrease of the objective function. In this context, we consider five design
variables which are the length of the body l, its height h, the coefficients for the position of the grid point cl and ch and the
slope m in the grid point (see Section 3 for further details). This leads to the design variable vector
q ¼ ðl;h;m; cl; chÞ:
We solve optimization problem (5) with corresponding volume constraint. We consider an initial design similar to the setup
corresponding to Fig. 7, which is represented in this case by q(0) = (0.05, 0.05, �1.0, 0.7, 0.7). As in Section 5.2 this configu-
ration leads to an unstable solution for the inflow velocity Vm = 0.195 m/s. The optimal solution obtained by means of the
proposed method is found to be
l ¼ 0:08 m; h ¼ 0:03 m; m ¼ �1:0; cl ¼ 0:8; ch ¼ 0:656:
As compared to the case of quadratic spline approximation we observe a slight reduction of the drag force in this situation,
since J = 5.361 instead of J = 5.388. The optimized design is also more stable with the real part of the smallest eigenvalue
being Re(kmin) = 0.07793 instead of Re(kmin) = 0.0675. However, it has to be noted that the volume restriction differs for
Streamlines of the eigenfunction associated to the smallest eigenvalue for the optimal solution assuming fixed volume and Vm = 0.195 m/s. This
leads to l = 0.08 m, h = 0.0312 m, FD = 5.388 and Re(kmin) = 0.0675. The function plot corresponds to the first component of the eigenfunction.

Streamlines of eigenfunction of smallest eigenvalue for optimized configuration assuming fixed volume and Vm = 0.195 m/s. This setting leads to
8, 0.03, �1.0, 0.8, 0.656), FD = 5.361 and Re(kmin) = 0.07793. The function plot corresponds to the first component of the eigenfunction.
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the cubic spline approximations since we use an approximation by the area under the control polygon instead of an ellipsoid
(see Section 3.2).

The eigenfunction associated to the smallest eigenvalue for the optimized configuration is shown in Fig. 12. Again we
have achieved a transition from an unstable design to a stable design only by solving a shape optimization problem.

An overview depicting the different initial and optimized configurations is given in Fig. 13.

6. Conclusion

In this paper we propose a numerical method towards shape optimization for flow problems assuming constraints with
respect to hydrodynamic stability. As an example we consider the flow around a body in a channel and use parameteriza-
tions of this body by quadratic and cubic spline functions. The goal is to minimize the drag force acting on the body by mod-
ifying its shape while ensuring hydrodynamic stability. The numerical simulations clearly validate the proposed approach
and show that a transition of an unstable design into a stable one can be attained by solely changing the shape of the body
keeping all other parameters constant. The resulting geometries lead to long and flat bodies which corresponds to common
intuition. Moreover, our investigations clearly show that shape optimization can only partly contribute to the stability
behaviour and that the boundary conditions, e.g. the inflow velocity, play also an important role in that context.

Since this work has a preliminary character several extension are possible. An important issue is to investigate other
shape parameterizations, especially techniques leading to an increase of flexibility in the description of the geometry. Con-
cerning the numerical solution of the problem the application of derivative-free and non-smooth algorithms is envisaged to
deal with the possibly non-differentiable eigenvalue function. Finally, the highly CPU time demanding computations which
are related to the solution of the underlying problem requires for complex configurations the use of techniques of high per-
formance computing. In that context further developments towards 3D settings are the object of current research.
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